Friday, September 26, 2014

+91-966-7571-966 ( Give us a missed call, we will call you back. )

TALLENTEX 2015 (PRE) & (MAIN) DATES, SELECTION & TEST FORMAT

Two Stage Test : TALLENTEX (PRE) & TALLENTEX (MAIN)

TALLENTEX (PRE) Dates : For All Registered Students
S Chandrasekhar, HG Khorana & HJ Bhabha Zones SUNDAY, 28th September, 2014 Click Here to know Your Zone
SS Abhyankar, Chanakya, JC Bose & Ramanujan Zones SUNDAY, 12th October, 2014
TALLENTEX (MAIN) Date : Only for TALLENTEX (PRE) Qualified Students
All Zones: 16 November 2014.


Qualification Criteria for TALLENTEX (MAIN)

Based on Result of TALLENTEX (PRE)
For Class V to VIII Either in All India Top 500 or Top 3 in own city
For Class IX & X Either in All India Top 1000 or Top 10 in own city
For Class XI* & XII* Either in All India Top 1000 or Top 10 in own city
* Each for Maths & Biology Stream

Head Details
Registration Fee D 200/-. Payable by DD (In favour of 'ALLEN Career Institute' payable at Kota) / Cash / Online
Registration last date
Mode FOR 28th September, 2014 FOR 12th October, 2014
By hand: 18 September, 2014 02 October, 2014
By Post: 15 September, 2014 30 September, 2014
How to Register for TALLENTEX (PRE) Fill online FORM by Click Here and pay also online
Fill online FORM by Click Here, download & print and send with DD of D 200/- to “TALLENTEX CELL” by post. Note: DDs received by post after last date will neither be accepted nor returned
Purchase FORM from any ALLEN Center, fill-in and deposit
Purchase FORM from your school if it has agreed for TALLENTEX registration, fill-in and deposit
Registration update Will be sent by SMS to mobile no. submitted by applicant & can also be checked by Click Here
Admit Card Download from www.tallentex.com 7 days before test OR Collect from any ALLEN Center OR Collect from your school if FORM deposited in school
Compulsory at Test Center TALLENTEX admit card and Original School Photo ID or School Mark Sheet
Zone Click here to check your Zone
Reporting Time Atleast 30 minutes prior to Test Time printed on admit card.
Exam Paper Pattern
(Both PRE & MAIN)
Class V to IX - Part-I : IQ, Part II : Physics; Chemistry; Biology; Maths
Class X, XI & XII- Part-I : IQ, Part II : Physics; Chemistry; Biology/Maths (Students attempt either Biology or Maths)
Syllabus Part-I: IQ does not have a syllabus. It comprises questions on logic & mental ability
Part-II: NCERT syllabus. Click Here for Details
No. Of Questions Part-I : 20 | Part-II : 60 . Sample test available at website only after paid registration
Medium of Exam English Only
Duration of Paper 2 Hours. It is Compulsory to take seat in exam hall atleast 30 minutes before test to fill in OMR.
Question pattern OMR based MCQs with 4 choices (single correct answer with negative marking)
+4 for each correct answer and -1 for each wrong answer
Question Distribution (Part-II) Click Here for Details
Result TALLENTEX (PRE): 27 October 2014
TALLENTEX (MAIN): Up to last Week of November 2014.
(At www.tallentex.com and to be sent by SMS)
Success Power Session Second Half of December 2014 at Kota (For National top 50 of each class)
Award AIR 51 and above as applicable respective category (1) If awarded student is from city where ALLEN center is present then award will be given in any of
Open Session conducted at ALLEN Center
(2) Award of rest of the students will be sent by post

Syllabus of TALLENTEX

+91-966-7571-966 ( Give us a missed call, we will call you back. )

Pattern & Syllabus of TALLENTEX 2015

Pattern of TALLENTEX

Item Details
Time Duration 2:30 Hrs
Note that the paper duration is 2:00 hours and Initial 30 Minutes are given to fill all important information in the Response Sheet and to read all instructions given on Paper
Exam Paper Pattern Paper-I : IQ
Paper II : Physics/Chemistry/Biology/Maths
Syllabus Paper-I: IQ does not have a syllabus. It comprises questions on application of logic & mental ability.
Paper-II: NCERT syllabus as mentioned below
Question pattern MCQs with 4 choices (single correct answer with negative marking)
No. Of Questions Paper-I : 20
Paper-II: 60
Paper Pattern (Part-II) Students of Class – V, VI & VII (Going to Class-VI, VII & VIII in 2015)
Physics: 12 ,Chemistry: 11, Biology : 12, Maths : 25
Students of Class – VIII & IX (Going to Class-IX & X in 2015)
Physics: 10 ,Chemistry: 10, Biology : 20, Maths : 20
Students of Class – X, XI (Going to Class-XI & XII in 2015) & XII
Compulsory subjects - Physics: 20 ,Chemistry: 20
Optional Subjects - Biology : 20 / Maths : 20
(In Paper II students need to attempt any one of the Optional Subject section)
Marking Scheme +4 for each correct answer and -1 for each wrong answer
Total Marks – 320 for all Classes

Syllabus of TALLENTEX

Class V
Physics Chemistry Biology Maths
  1. How things move – force & work
  2. Simple Machines
  3. Our Universe
  1. Rock & Minerals
  2. Natural Resources
  1. Health & Disease
  2. Animals & their life style
  3. Food & Health
  1. Fractions
  2. Decimals
  3. Angles
  4. Triangles, Area & Perimeter
Class VI
Physics Chemistry Biology Maths
  1. Motion and Measurement of Distances
  2. Light, Shadows and Reflections
  3. Electric Circuits and Magnetisms
  1. Sorting Materials into Groups
  2. Separation of Substances
  3. Changes around us
  1. Food and Nutrition
  2. Living Organisms and their surroundings
  3. Fibre to Fabric
  1. Number System
  2. Integer, Fraction & Decimals
  3. Basic Geometry
  4. Understanding Elementary Shapes
Class VII
Physics Chemistry Biology Maths
  1. Motion and Time
  2. Heat
  3. Light
  1. Acids, Bases & Salts
  2. Physical and Chemical Changes
  3. Separation of Mixtures
  1. Nutrition in Plants and Animals
  2. Natural Fibres and Fabrics
  3. Living Organisms and their surroundings
  1. Integers
  2. Fractions and Decimal Numbers
  3. Simple Equations
  4. Lines & Angles
  5. Triangles & Properties and Congruence of Triangles
Class VIII
Physics Chemistry Biology Maths
  1. Motion
  2. Force & Pressure
  3. Sound
  4. Light
  1. Acids and Bases
  2. Physical and Chemical Changes
  3. Metals and Non Metals
  1. Microorganisms
  2. Cell – Structure & Functions
  3. Nutrition in Plants and Animals
  1. Rational Numbers
  2. Exponent and Powers
  3. Squares and Square Roots, Cubes and Cube Roots
  4. Linear Equation in one variable
  5. Understanding Quadrilaterals and Constructions Mensuration
Class IX
Physics Chemistry Biology Maths
  1. Kinematics
  2. Motion, Force and Pressure
  3. Work, Energy and Power
  4. Gravitation
  5. Sound
  1. All About Matter
  2. Mixtures
  3. Materials
  4. Metals and Non-metals
  1. Cell and Cell Division
  2. Tissues
  3. Microorganism
  4. Technology in Food Production
  5. Diversity in Living Organisms
  1. Number System and Number Sense
  2. Lines, Angles and Triangles
  3. Area of Plane Figures & Solid Shapes
  4. Volume of Solids
  5. Linear Equations in One variable
  6. Mensuration
  7. Ratio, proportion and percentage
  8. Direct & Inverse Proportion
  9. Exponents and Powers
Class X
Physics Chemistry Biology Maths
  1. Electric Circuits
  2. Magnetism
  3. Sound
  4. Kinematics
  5. Force and Motion
  6. Work, Energy and Power
  1. Acids, Bases and Salts
  2. Metals
  3. All About Matter & Materials
  4. Compounds
  5. Mixtures
  6. Chemical Calculations
  1. Life Processes
  2. Control and Coordination
  3. Cell Division
  4. Tissues
  5. Diversity in Living Organisms
  6. Biogeochemical Cycles
  7. Human Influences on Environment and Repair
  1. Real Numbers and Polynomials
  2. Pair of Linear Equations in Two Variables
  3. Quadratic Equations
  4. Similar Triangles
  5. Trigonometry and its Applications
  6. Number system and Number Sense
  7. Lines, Angles, Triangles
  8. Area of Plane Figures and Solid Shapes
  9. Volume of Solids
  10. Coordinate Geometry
  11. Quadrilaterals and Area of Parallelograms and Triangles
  12. Circles
  13. Basic Trigonometry
Class XI
Physics Chemistry Biology
(for Aspirants of Pre-Medical)
Maths
(For Aspirants of JEE)
  1. Physical World and Measurement
  2. Kinematics
  3. Laws of Motion
  4. Work, Energy and Power
  5. Motion of System of Particles
  6. Rigid Body Dynamics
  1. Some Basic Concepts of Chemistry
  2. Structure of Atom
  3. Classification of Elements and Periodicity in Properties
  4. Chemical Bonding and Molecular Structure
  5. States of Matter : Gases and Liquids
  1. Biodiversity
  2. Diversity in Plants and Fungi
  3. Structural Organization in Plants
  4. Diversity in Animals
  5. Biomolecules
  1. Sequence and Series
  2. Linear and Quadratic Inequalities
  3. Quadratic Equations
  4. Complex Numbers
  5. Trigonometric Functions
  6. Straight Lines
  7. Circles
Class XII
Physics Chemistry Biology
(for Aspirants of Pre-Medical)
Maths
(For Aspirants of JEE)
  1. Electrostatics (Including Capacitance)
  2. Current Electricity, Magnetic Effects of Current and Magnetism
  3. Electromagnetic Induction and Alternating Currents
  4. Kinematics & Laws of Motion
  5. Work, Energy and Power
  6. System of Particles & Conservation of Momentum
  7. Rigid Body Dynamics
  8. Heat, KTG & Thermodynamics
  1. Solid  State
  2. Solutions
  3. Electrochemistry
  4. s-Block & p-Block Elements
  5. GOC & Isomerism
  6. Hydrocarbons & Alkyle Halides
  7. Alchols, Phenols and Ethers
  8. Stoichiometry
  9. Structure of Atom
  10. Classification of Elements and Periodicity in Properties
  11. Chemical Bonding and Molecular Structure
  12. States of Matter : Gases and Liquids
  13. Redox Reactions
  14. Chemical and Ionic Equilibrium
  15. Thermodynamics
  1. Biodiversity
  2. Diversity in Plants and Fungi
  3. Structural  Organization in Plants
  4. Diversity in Animals
  5. Biomolecules
  6. Study of Cell-Tools and Techniques
  7. Structure and Functions of a Cell & Cell Cycle
  8. Photosynthesis in Plants
  9. Mineral Nutrition and Transport in Plants
  10. Cellular Respiration
  11. Structural Organization in Animals
  12. Nutrition, Digestion and Absorption
  13. Circulation and Exchange of Gases
  14. Osmoregulation and Excretion
  15. Movement and Locomotion
  16. Plant Development and Reproduction
  17. Animal Development and Reproduction
  18. Heredity and Variation
  19. Molecular Basis of Inheritance
  20. Evolution
  21. Statics and Dynamics of an Ecosystem
  22. Statics and Dynamics of Organisms and Population
  1. Sets, Relations and Functions
  2. Limits, Continuity and Differentiability
  3. Application of Derivatives
  4. Sequence and Series
  5. Linear and Quadratic Inequalities
  6. Quadratic Equations
  7. Complex Numbers
  8. Trigonometric Functions
  9. Straight Lines
  10. Conic Sections
  11. Probability

tallentex 2014-2015 syllabus

Class X
Physics Chemistry Biology Maths
  1. Electric Circuits
  2. Magnetism
  3. Sound
  4. Kinematics
  5. Force and Motion
  6. Work, Energy and Power
  1. Acids, Bases and Salts
  2. Metals
  3. All About Matter & Materials
  4. Compounds
  5. Mixtures
  6. Chemical Calculations
  1. Life Processes
  2. Control and Coordination
  3. Cell Division
  4. Tissues
  5. Diversity in Living Organisms
  6. Biogeochemical Cycles
  7. Human Influences on Environment and Repair
  1. Real Numbers and Polynomials
  2. Pair of Linear Equations in Two Variables
  3. Quadratic Equations
  4. Similar Triangles
  5. Trigonometry and its Applications
  6. Number system and Number Sense
  7. Lines, Angles, Triangles
  8. Area of Plane Figures and Solid Shapes
  9. Volume of Solids
  10. Coordinate Geometry
  11. Quadrilaterals and Area of Parallelograms and Triangles
  12. Circles
  13. Basic Trigonometry

Wednesday, September 17, 2014

This morning as I walked along the lakeshore, I fell in love with a wren and later in the day with a mouse the cat had dropped under the dining room table. In the shadows of an autumn evening, I fell for a seamstress still at her machine in the tailor’s window, and later for a bowl of broth, steam rising like smoke from a naval battle. This is the best kind of love, I thought, without recompense, without gifts, or unkind words, without suspicion, or silence on the telephone. The love of the chestnut, the jazz cap and one hand on the wheel. No lust, no slam of the door – the love of the miniature orange tree, the clean white shirt, the hot evening shower, the highway that cuts across Florida. No waiting, no huffiness, or rancor – just a twinge every now and then for the wren who had built her nest on a low branch overhanging the water and for the dead mouse, still dressed in its light brown suit. But my heart is always propped up in a field on its tripod, ready for the next arrow. After I carried the mouse by the tail to a pile of leaves in the woods, I found myself standing at the bathroom sink gazing down affectionately at the soap, so patient and soluble, so at home in its pale green soap dish. I could feel myself falling again as I felt its turning in my wet hands and caught the scent of lavender and stone. - Billy Collins

Saturday, September 6, 2014

The twin paradox: Is the symmetry of time dilation paradoxical?

    The twin paradox uses the symmetry of time dilation to produce a situation that seems paradoxical. In the introductory film clip, we saw that time was dilated when observed from frames of reference with a constant relative velocity v. There is an animation and analysis below, but let's introduce it with a cartoon.

 
ly strange thing about time dilation is that it is symmetrical: if you and I have relative motion, then I see your clock to be running slow, and you see mine to be running slow. (Revise time dilation.) This is just one example of the weird logic of Einstein's theory of Special Relativity. The theory is counter-intuitive, because most of us are unfamiliar with measurements made at speeds approaching c, the speed of light. Because of this, it is fun to attempt to prove that it is wrong. Surely it's possible to make a paradox out of the symmetry of time dilation? Let's see. Jane and Joe are twins. Jane travels in a straight line at a relativistic speed v to some distant location. She then decelerates and returns. Her twin brother Joe stays at home on Earth. The situation is shown in the diagram, which is not to scale. Joe observes that Jane's on-board clocks (including her biological one), which run at Jane's proper time, run slowly on both outbound and return leg. He therefore concludes that she will be younger than he will be when she returns. On the outward leg, Jane observes Joe's clock to run slowly, and she observes that it ticks slowly on the return run. So will Jane conclude that Joe will have aged less? And if she does, who is correct? According to the proponents of the paradox, there is a symmetry between the two observers, so, just plugging in the equations of relativity, each will predict that the other is younger. This cannot be simultaneously true for both so, if the argument is correct, relativity is wrong.

Analysis

To analyse this problem, let's make the observations of each other's clocks explicit: for instance, the clock's ticks can be transmitted from one twin to the other via electromagnetic radiation (EMR). In principle, each could use a telescope to look at the other's clock. However, to simplify the diagram, the clocks tick once per year, and each twin sends the other a greeting message on the anniversary of their separation. (Note that the light received by the telescope and the radio anniversary message both travel at the same speed, so these two are logically equivalent.)
Now let's draw graphs of position vs time for the voyages of the two twins, and also for their anniversary messages. These are called space time diagrams. Note that there are three space time diagrams, one for each of the three different inertial reference frames that are involved in this problem. At left is Joe's diagram. At right are Jane's two diagrams, with the diagram for the return journey drawn above that for the outward journey. These diagrams are drawn to scale for v = 0.66 c. The distance is 2.67 light years in each direction, as measured in Joe's frame. Thus Joe concludes the voyage will take (2.67 light years)/0.66 c = 4 years in each direction. In each of Jane's frames, the journey length is shorter by the factor 1/γ = (1 − v2/c2)1/2 = 0.75, so for her the distance is only 0.75*2.67 = two light years, so at 0.66 c it takes her only 3 years in each direction. According to Joe, he will have aged 8 years and Jane will have aged 6 years when they are reunited. Jane's version of events will depend upon how careful she is about applying Special Relativity.
(A printable, non-animated version of this figure is given at the end of the page) The naive interpretation--the reason why the situation is called a paradox--is to assume that the situation is competely symmetrical. If that were the case, Jane's diagram would simply be a mirror image of Joe's. But Special Relativity applies only to the relations between inertial frames of reference. In this regard, the situations of the twins are definitely not symmetrical. Joe is in one inertial frame throughout. (We discuss the partial symmetry below.)
description Jane certainly knows that she has not been in the same inertial frame for the whole trip: in order to stop the outward journey and to commence the return, she had to turn the ship around and fire the engines hard and long. During that time she knew that she was not in an inertial frame (the importance of this is discussed below) because suddenly the objects, including her, were all squashed towards the end of the spaceship with the engines. (She had to give up lots of the best yoga positions and hyperdance routines, too.) Then, when the ship was travelling at v towards Earth, she cut the engines, she was back in another, different, inertial frame. In the second of Jane's inertial frames (the homeward trip), she receives a lot of anniversary messages from Joe. If she pretends that she has been in this same frame of reference all along (the dashed line extrapolation of her returning world line), i.e. if she assumes that she has been travelling towards Earth at constant v for six of her years, she would conclude that Joe had been sending them for eight of his years (follow the dashed lines). Now this is a strange assumption, because she would also conclude that she and Joe had never been together - that Jane and Joe never occupied the same position before! Making this strange assumption, she would calculate that, when she started the trip (the bottom line on her diagram) Joe was four light years away from her, had already been travelling towards her for two years, and had already sent a couple of anniversary messages! (See the dashed lines in the diagram.) Another very asymmetrical observation is that Jane notices a sudden change in the rate of arrival of the messages, just after she turns. We discuss this further below. Let's now assume that Jane is not naive, that she knows about relativity, that she remembers the acceleration, that she remembers being with Joe at the beginning of the trip and that she uses this knowledge in analysing her version of the space time diagrams. First, once she has left the Earth, accelerated and is travelling without acceleration towards her destination, she can apply Special Relativity. She observes that the distance between the Earth and her destination has shrunk. (See Relativistic time dilation, simultaneity and length contraction for an explanation.) It has shrunk by the factor 1/γ = (1 − v2/c2)1/2 = 0.75, so she now only has to travel for three of her years to get there. Similarly, in her return trip (another inertial frame so she can use Special Relativity again) the distance is also shorter, so she only has to travel for three years to get there. So Jane's space time diagrams are those shown at right. (We repeat the diagram.)

Are the space-time diagrams symmetrical? Parts of them are. The first three years of the diagrams for Joe's frame and Jane's departing frame are symmetrical: each twin sends three greetings but only receives one. The last year and a half of Joe's frame and Jane's returning frame are also symmetrical: each sends two greetings and receives four. But the diagrams are not symmetrical in between. Why not? Look at Jane's diagram. From Jane's point of view, immediately after she has fired her engines, she begins receiving Joe's greetings more frequently. This does not surprise her: she has gone from travelling away from the sender of the greetings and is now travelling towards him. Jane observes this change as soon as she turns around, which is for her the midpoint of her voyage. (She now receives blue shifted messages instead of red shifted ones. One could apply the same relativistic Doppler factor to the frequency of arrival of the messages.) Joe, on the other hand, doesn't start to receive messages at a higher frequency (blue shifted messages) until considerably after the midpoint between Jane's departure and arrival, simply because the effect of Jane's acceleration and changed reference frame takes a while to get to him: he doesn't see the high frequency arrival of messages until the arrival of the first message that Jane sends after she turns around. This is a clear example of where the asymmetry of the twins appears. The causes of this asymmetry are the fact that Jane reverses direction and Joe does not, and the finite time that light takes to transmit this information to Joe means that Joe doesn't get the news immediately. Jane leaves one inertial frame and joins another, and she has the effect of that change immediately. Joe, on the other hand, doesn't notice the effects of Jane being in a different inertial frame until much later because she is a long way away from him when it happens. The asymmetry is as simple as that. In these diagrams, we have resolved the paradox by pointing out that the problem is not symmetrical: Jane actually has two different inertial frames of reference, the outgoing voyage and the return. Two different clock synchronisation events are required, and the easist examples of these are at their separation (for the outward journey) and their reunion (for the return). To understand the importance of synchronising clocks in Special Relativity, see Relativistic time dilation. Why is the accleration in mid voyage so important?. As we saw above, it marks the point at which Jane goes from one inertial frame to another. Does this have a direct, physical effect on her? Let's picture what happens. While the engines were on at mid voyage, objects in the spacecraft are no longer in free fall (they are no longer 'weightless'): the objects in Jane's ship collect on the 'floor' (this is the name we might give to the wall in a space ship in the direction of the engine exhaust). During this phase, and with reference to the frame of the ship, any free objects seem to accelerate towards the 'floor'. No force is causing this 'acceleration', so this is not an inertial frame. (For the importance of inertial frames, see this link.) Now if Jane treats this as an acceleration, she will deduce from it that she will no longer be flying away from Joe's messages, but flying towards them, so she will, as we saw above, expect them to arrive at higher frequency, starting immediately. Applying Special Relativity, she will conclude that she will arrive having aged less than Joe. But what if there are no windows on Jane's ship? Is there an alternative, local explanation for the asymmetry in the clocks and messages? There is, and it involves Einstein's General Theory of Relativity. If Jane cannot look out of the ship, her sensations and measurements during the deceleration will be just the same is if her ship were at rest on the surface of a planet and that gravity made things fall towards the floor. The local equivalence of a gravitational field and an accelerating frame is a starting point for Einstein's General Theory of Relativity. One of the consequences of the general theory is that clocks at high gravitational potential run more quickly than those at low potential. (So, for example, very accurate laboratory clocks on Earth run are observed to run faster when their altitude is increased.) In terms of Jane's local frame during the turn around, Joe is a long way overhead and so, according to her, his clocks run fast during that time, and he ages quickly. Further, Joe's 'height' above her depends on how far she has travelled, so his clocks run more quickly during the turn around in a long voyage. This is quite important, because proponents of the twin paradox sometimes argue that, whatever the effect of the turn around, it can be made negligible by making the journey far enough. Not so. The longer the journey, the greater the effect due to GR. (Similarly, in terms of the SR argument above, the longer the journey, the longer it takes for Jane's change of frames to be observed by Joe, and so the bigger effect.) Thus, if Jane applies General Relativity as well as Special Relativity, she concludes that Joe will be older and thus resolves the paradox. It is important to point out, however, that appealing to General Relativity is not necessary to resolve the paradox, as demonstrated above. In order to create the twin paradox, one must assume that Jane has been in a single inertial frame throughout her out-and-back trip. As this assumption is false, there is no paradox.